European Union / United Nations Economic Commission for Europe International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests

Meeting of the Working Group on QA/QC (subgroup of the Expert Panel Deposition) together with experts in chemical analysis from other Expert Panels

Report of the QC/QA work and the previous ring tests within the Expert Panel on Deposition

26-27 February 2007, DG Environment, Brussels, Belgium

Working Group on QA/QC

atmospheric deposition and soil water

Nils König, Goettingen, Germany

Rosario Mosello, Gabriele Tartari, Verbania Pallanza, Italy

John and Kirsti Derome, Rovaniemi, Finland

Erwin Ulrich, Fontainebleau, France

Nicholas Clarke, Ås, Norway

Anna Kowalska, Warsaw, Poland

Aims of the WG on QA/QC

The WG on QA/QC promotes actions, discussions and meetings to achieve a general improvement of the QA/QC in the analytical activities performed within the ICP Forests.

Activities done and going on:

1. Update of the Part VI (Sampling and analysis of atmospheric deposition) of the ICP Forests manual, dealing with QA/QC in chemical analyses and data validation

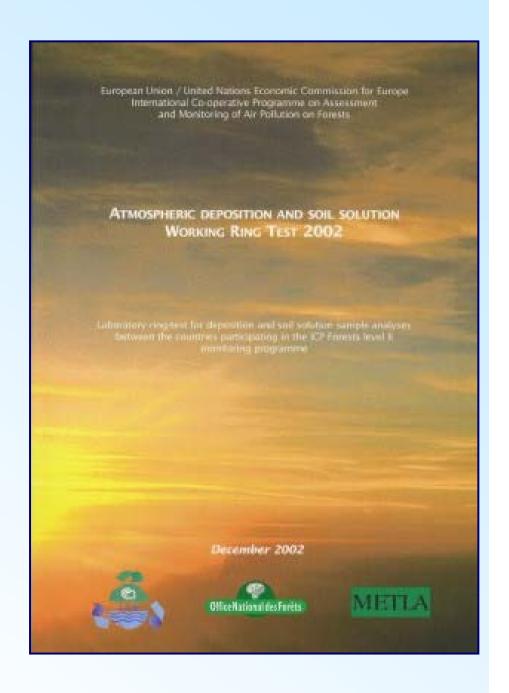
United Nations Economic Commission for Europe

CONVENTION ON LONG-RANGE TRANSBOUNDARY AIR POLLUTION

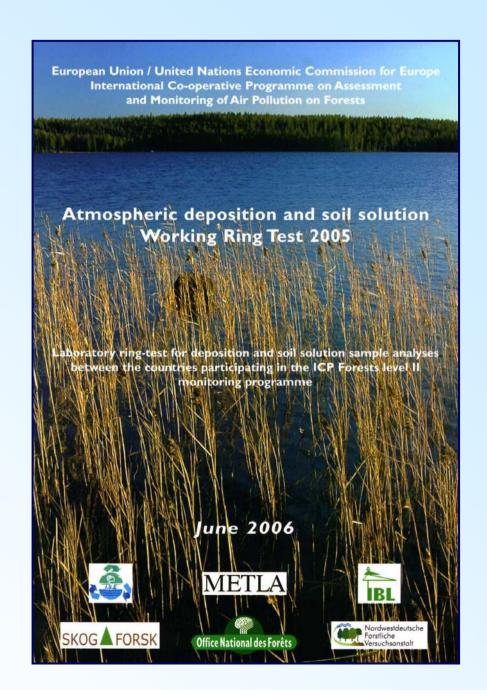
International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests

MANUAL

on


Methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests

Part VI


Sampling and Analysis of Deposition

2. Organisation of Working Ring Tests (WRT) for the analyses of atmospheric deposition and soil water.

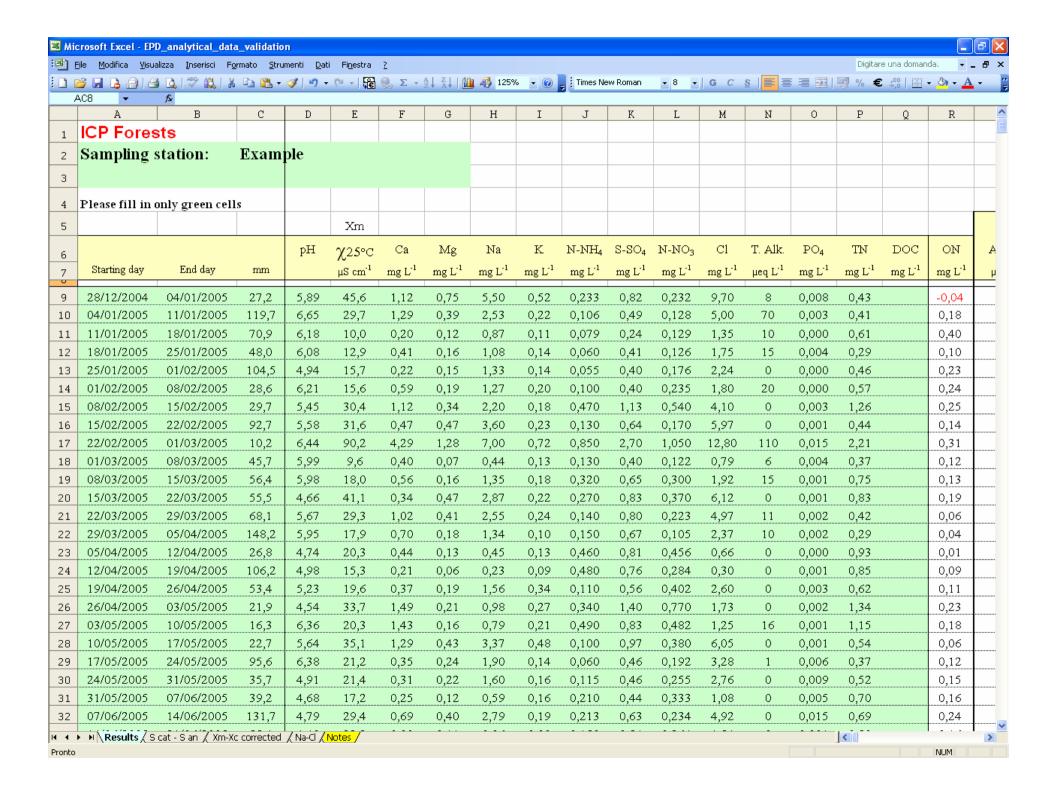
Working Ring Test 1 (2002)

Working Ring Test 2 (2005)

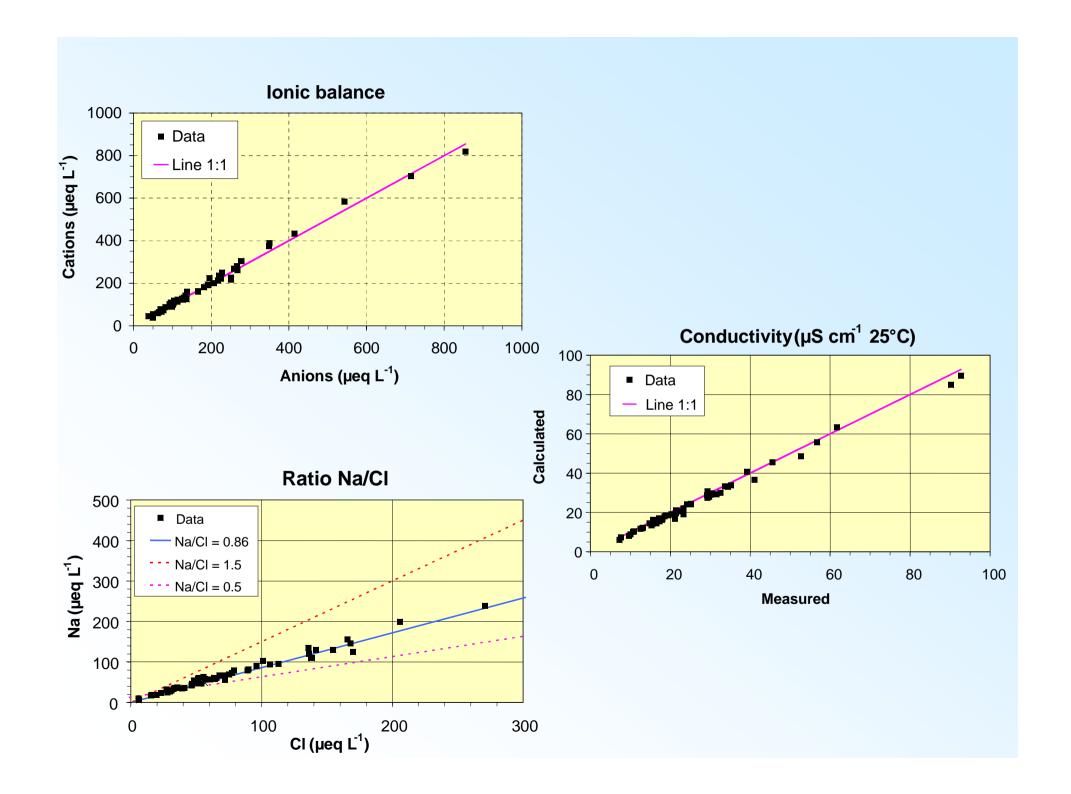
3. Criteria for the validation of chemical analyses:

- ➤ Ionic balance;
- ➤ Comparison between measured and calculated conductivity;
- ➤ Na/CI ratio validation test;
- ➤ Organic nitrogen validation test.

Table 5.5.2: Acceptance threshold values in data validation based on the ionic balance and conductivity. PD and CD are defined in chapters 5.5.1 and 5.5.2 respectively.


Conductivity 25 °C	PD	CD
< 10 µS cm-1	± 20%	±30%
< 20 µS cm-1	± 20%	±20%
> 20 µS cm-1	± 10%	±10%

 $PD = 100 * (\sum cat - \sum an)/(0.5*(\sum cat + \sum an))$


CD = 100 * (CE-CM)/CM

CM= measured conductivity CE= conductivity calculated

From the MANUAL on "Methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests", Part VI Sampling and Analysis of Deposition, updated June 2004.

⊠ Mic	rosoft Exc	cel - EPD_	analytical _.	_data_validati	ion								[.	·
File Modifica Visualizza Inserisci Formato Strumenti Dati Finestra ?														
□ 🚰 🖟 🖟 🖟 🐧 🐧 🐧 🐧 🐧 🖟 🔻 🖺 🖟 🖟 🖒 🖒 🖺 🖺 ▼ 🍼 •9 ▼ (□ ▼ 🔞 🚇 Σ ▼ ½↓ ¼↓ 🛍 🐗 125% 🔻 ② 🕞 Times New Roman 🔻 8 🔻 G C S 📰 🚍 🔄 🔄 9 % € 🖑 □ ▼ 💁 ▼ 🛕 ▼														
_		<i>▼ †</i>		~			**	f.3	.,,	**	7	3.3	3.0	
_	P	Q	R	S	T	U	V	W	X	Y	Z	AA	AB	
3														
4				San	S cat				Xcc					
5				Sum		Ions	Quality		Calculated corrected	Cond.	Quality	Quality	Quality	
	TN	DOC	ON	Anions	Cations	Diff. %	Ions	Ratio	Conductivity	Diff. %	Conductivity	Org N	ratio	
6						sC-sA	balance	Na/Cl	-	Cc-Cm	Constitution	0.51	Na/Cl	
7	mg L ⁻¹	mg L ⁻¹	mg L ⁻¹	μeq L ⁻¹	μeq L ⁻¹	3C-3R	Darance	NavCI	μS cm ⁻¹ 25°C	OU-CIII			114/01	
9	0,43		-0,04	350	388	10	NO	0,87	46	0	ok	NO TN	ok	
10	0,41		0,18	251	220	-13	NO	0,78	28	-6	ok	ok	ok	
11	0,61		0,40	72	67	-8	ok	0,99	9	-11	ok	ok	ok	
12	0,29		0,10	99	89	-10	ok	0,95	12	-7	ok	ok	ok	
13	0,46		0,23	101	100	-1	ok	0,92	16	2	ok	ok	ok	
14	0,57		0,24	113	113	0	ok	1,09	14	-10	ok	ok	ok	
15	1,26		0,25	225	221	-2	ok	0,83	30	-2	ok	ok	ok	
16	0,44		0,14	220	236	7	ok	0,93	29	-8	ok	ok	ok	
17	2,21		0,31	715	703	-2	ok	0,84	85	-6	ok	ok	ok	
18	0,37		0,12	62	58	-6	ok	0,86	8	-15	ok	ok	ok	
19	0,75		0,13	131	128	-2	ok	1,08	17	-7	ok	ok	ok	
20	0,83		0,19	251	227	-10	ok	0,72	37	-11	NO	ok	ok	
21	0,42		0,06	217	214	-2	ok	0,79	28	-6	ok	ok	ok	
22	0,29		0,04	126	123	-3	ok	0,87	16	-10	ok	ok	ok	
23	0,93		0,01	102	107	5	ok	1,05	19	-6	ok	ok	ok	
24	0,85		0,09	76	72	-5	ok	1,18	13	-13	ok	ok	ok	
25	0,62		0,11	137	124	-10	ok	0,93	18	-6	ok	ok	ok	
26	1,34		0,23	191	194	2	ok	0,87	33	-1	ok	ok	ok	
27	1,15		0,18	137	160	15	NO	0,97	19	-6	ok	ok	ok	
28	0,54		0,06	259	268	4	ok	0,86	34	-4	ok	ok	ok	
29	0,37		0,12	136	128	-6	ok	0,89	17	-20	NO	ok	ok	
30	0,52		0,15	125	128	2	ok	0,89	20	-8	ok	ok	ok	
31	0,70		0,16	82	88	7	ok	0,84	17	-1	ok	ok	ok	
32	0,69		0,24	195	225	14	NO	0,87	31	5	ok	ok	ok	
33	0,58		0,16	96	98	2	ok	0,86	22	-6	ok	ok	ok	
34	0,50		0,12	134	143	6	ok	0,98	18	-4	ok	ok	ok	
35	0.85	ulto / S co	0,14	104 Ym-Yc corrected	119	13	ok	1,09	18	-3	ok	ok	ok	
Results / S cat - S an / Xm-Xc corrected / Na-Cl / Notes / Pronto						NUM								

Criteria proposed for the data validation are not rigid and mandatory, but should be used merely as guidelines for the person in charge of validation in each laboratory.

Analyses which do not fit with the validation criteria should be repeated and, if data are confirmed, they should be accepted and included in the database.

4. Advise and assist all laboratories which seek help or which have been identified as having analytical difficulties in progressing with their own QA/QC. Identify each year a maximum of 2-3 laboratories to be actively helped; fix targets with these labs and follow their progress according to mutually agreed targets.

Exchange of researchers/technicians within the active help to laboratories

			Overall costs paid by ONF
Name	Organisation	Raison of travel	(Grant agreement)
Polona Kalan	Slovenian Forestry Institute	Göttingen meeting April 2005	yes
Anna Kowalska	Polish Forest Research Institute	Göttingen meeting April 2005	yes
Nicholas Clarke	Norvegian Forest Reserach Institute	Göttingen meeting April 2005	yes
Anna Kowalska	Polish Forest Research Institute	Pallanza meeting Sept. 2005	yes
Nicholas Clarke	Norvegian Forest Reserach Institute	Pallanza meeting Sept. 2005	yes
Irina Smirnova	Soil Science Faculty, Moscow State Univ	vo Lah visit to Warszawa	Voc
Olga Plyaskina	Soil Science Faculty, Moscow State Univ		yes
· ·	• /		yes
Zhanna Lytkina	Institute of Biology, Komi Scientific Cer		yes
Tatyana Sytar	Institute of Biology, Komi Scientific Cer		yes
Anita Stansikova	National Forest Service, Slovakia	Lab. visit to Göttingen	yes
Jana Durkovicova	National Forest Service, Slovakia	Lab. visit to Göttingen	yes
T. Jakovljevic + M. I	He Croatian Forest Research Institute	Lab. visit to Pallanza	yes
R. Mosello, G. Tartar	ri CNR-ISE	Lab. visit in Sárvár (Hungary)	no
J. Sitkey + M. József	né Hungarian Forest Research Institute	Lab. visit to Pallanza	no
T. Jakovljevic	Croatian Forest Research Institute	Lab. visit to Pallanza	no

5. Develop and follow annually a 5-7 main analytical QA/QC indicators designed to show objectively the evolution/progress in QA/QC made by all participating countries.

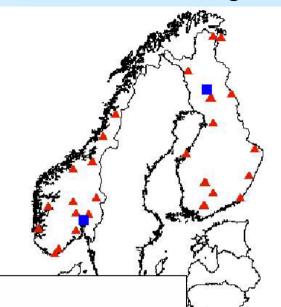
Number of participants at the WRTs and to the discussion meeting of the WRT results.

Number of countries helped on how many parameters by the working group on QA/QC in labs.

Number of solved problems from the participants received by the working group on QA/QC.

Number of labs getting better/worse in WRTs.

Number of labs with a reproducibility on sulphate, nitrate and ammonia of less then 10% for a concentration of ...(to be defined).


WRTs results: % of laboratories which perform all the measurements, % of outlier results.

Activities done and going on

6. Inter-laboratory studies aimed at testing validation checks

➤ About 5000 analyses of deposition samples done from 7 different laboratories

- Broadleaves
- Coniferous
- Laboratories

J. Limnol., 64(2): 93-102, 2005

Validation of chemical analyses of atmospheric deposition in forested European sites

Rosario MOSELLO*, Monica AMORIELLO¹, Tiziana AMORIELLO¹, Silvia ARISCI, Andrea CARCANO, Nicholas CLARKE², John DEROME³, Kirsti DEROME³, Nils KOENIG⁴, Gabriele TARTARI, Erwin ULRICH⁵)

CNR Institute Ecosystem Study, Largo V. Tonolli 50, 28922 Verbania Pallanza, Italy

¹⁾CRA Experimental Institute for Plant Nutrition, Via della Navicella 2/4, 00184 Roma, Italy

²⁾Norwegian Forest Research Institute, Hogskoleveien 12, 1432 Ås, Norway

³⁾Finnish Forest Research Institute, Rovaniemi, P.O. Box 16, 96301 Finland

⁴⁾Niedersaechsische Forstliche Versuchsanstalt, Graetzelstr. 2, 37079 Goettingen, Germany

⁵⁾Office National des Forêts, Boulevard de Constance, 77300 Fontainebleau, France

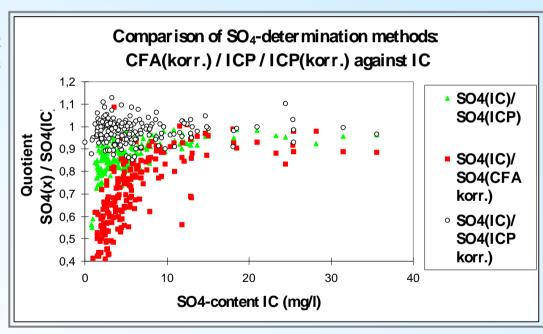
^{*}e-mail corresponding author: r.mosello@ise.cnr.it

Activities done and going on

7. EPD-Info-sheets

Why EPD-Info-sheets:

- In all good laboratories many experiences are gained during daily work.
 Different materials are tested, analytical methods are compared, new methods are tested.
- With the EPD-info-sheets we try to make these experiences available for all members of the expert panel on deposition and the authorized laboratories of the member countries.


EPD	Analytical informations	TI (No)
method comparison	Comparison of ICP-, IC- and spectrophotometric determination in colored soil solutions	SO ₄

1.Compared methods:

Ion exchange chromatography without chemical suppression; eluent: phthalic acid with(König, Fortmann 1996 a)

Total S determination with ICP, correction for organic sulfur: determination of DOC and subtraction of Corg [mg/l]/130 from total sulfur content; (König, Fortmann 1996 b)

CFA-spectrophotometric determination of SO4 with Ba-methylthymol blue reaction after separation of interfering (König, Fortmann 1996 c)

- 2. procedure
- 3. results
- 4. literature

5. executive laboratory:

Niedersächsische Forstliche Versuchsanstalt Nils König, Göttingen, nils.koenig@nfv.gwdg.de

Activities done and going on

9. Collaboration with the institution appointed to store and elaborate the data (JRC and BFH) relating to the QA/QC of the laboratories, and to perform data validation and elaboration. Cooperate with the QA/QC executives from the soil expert panel to check the possibility of a combined working group.