Meeting of the Heads of the Laboratories Warsaw, 12-13 October 2009

Nicolas Proix

AGRICULTURE

Application of microwave assisted Aqua Regia extraction to soil samples: advantages and disadvantages

Soil Analysis Laboratory Nicolas Proix

A L I M E N T A T I O N
A G R I C U L T U R E

INTRODUCTION

- Evaluate advantages and disavandtages of microwave assisted Aqua Regia extraction
- Compare with reflux aqua regia extraction method
- ➤ Underline the influence of particle size on extract element

Extraction Method

- Microwave assisted extraction (WD ISO TC 190 SC 3 WG 1)
 - 300 mg soil sample
 - 3 ml HCl, 1 ml HNO₃
 - 175°c 10 min
 - Filtration, final volume 100ml
 - ICPAES or ICPMS

Advantages

- Microwave assisted extraction (WD ISO TC 190 SC 3 WG 1)
 - Faster, and safer than reflux AQ extraction,
 - 40 samples by batch
 - No dilution need for ICPAES measurements,
 - Fewer acid consumption,
 - Less corrosion problems

Constraints

- The low test portion level (300mg) has two consequences:
 - It becomes mandatory to use the test sample with a particle size $< 250 \mu m$, in order to insure the homogeneity of test portion;
 - the low test portion returns a high contamination level in case of accidental contamination.

Constraints

- In order to evaluate the consequence of changes in extraction mode, we investigate:
 - Reflux AQ particle size 2mm AQ2000
 - Reflux AQ particle size 250µm AQ250
 - Assisted μwave AQ, particle size 250μm AQμwaves.
 - And the following elements:

Al, Ca, Fe, Mg, Mn, Na, P, S by ICPAES Cu, Cr, Ni, Pb, Zn by ICPAES K Flame emission, Cd ICPMS

Extraction Methods

- Aqua regia extraction ISO 11466
 - 3g soil sample particle size < 2mm or particle size < 250μm
 - 21 ml HCl, 7 ml HNO3
 - Reflux 2 hours
 - Filtration, final volume 100ml

Experimental protocol

- Selected soils:
 - Samples A, B, C from 6th FSCC Interlaboratory comparison
 - Two internal reference soils from SAL
- Protocol:
 - 3 independent extractions including 5 tests on each soil with AQ 2000, AQ 250 and AQμwaves.
- Calculation: normalization with AQµwaves value
 - value (AQ250) or (AQ2000)/value(AQµwave) x 100

Results

Ratio between reflux AQ and µwave AQextraction Mean value obtained on studied soils

AGRICULTURE

REF % ratio Cd 85-110 Cu 85-110 Ni 85-110 Pb 85-110 Zn 85-110 Fe 85-110 Mn 85-110 85-110 AI 70-85 Ca 70-85 Cr 70-85 Mg 70-85 S 70-85 K < 50 Na < 50

Conclusions

The assisted µwaves AQ extraction is useful and safer than reflux AQ. The obtained results between both methods for green elements are in good agreement.

A soft shift is observed for the orange elements, and a hard shift for the red elements.

This shift is not only due to change in test sample particle size, but to more energetic extraction conditions.

Soil Analysis Laboratory Nicolas Proix

ALIMENTATION

AGRICULTURE

