

Mouldy problems and more with CEC determination!

Philip O'Dea & Brendan Waugh

Presentation will discuss briefly:

- Mouldy BaCl₂ extractions for CEC determination
- NaF titration vs German method for exchangeable acidity determination

Mouldy BaCl₂ extractions for CEC determination!

Problem:

■ BaCl₂ extracts were found to be growing mould within 5 days of extraction when stored at ambient temperature.

Potential Solutions:

- Extracts that were stored at 4° C were found to have grown mould within 72 hours after reaching room temperature.
- Chloroform was not found to inhibit mould growth.

Final Solution:

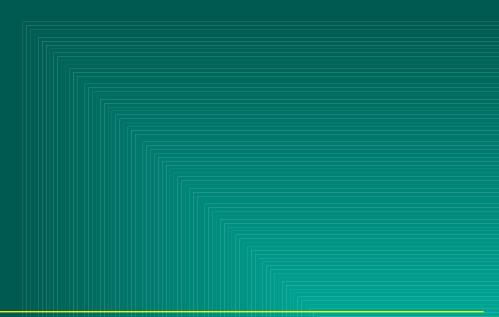
- Extractions conducted for CEC determination were acidified with 1.45 ml of conc. HNO₃ and 1.35 ml of conc. HCl prior to been made up to the 100 ml mark with BaCl₂. (Similar to the acid concentration in the standards used on the ICP-MS).
- Acidified extracts were observed to be stable for at least 2 months.

Comparing the German method (GM) with NaF titration for the determination of exchangeable acidity in soils

- There has been some debate about the merits of determining exchangeable acidity using the GM vs NaF titration.
- Exchangeable acidity by the GM can be calculated from the sum of the CEC exchangeable elements of Fe, Mn, Al and H⁺ like so:

$$E_{acidity} = Fe + Mn + Al + H^+$$

A comparison was made between the exchangeable acidity determined by the addition of Fe, Mn, Al, and Free H⁺(i.e. GM), versus exchangeable acidity determined by titration (SA10) on the 6th FSCC ring test samples.


Summary of the results from the inter-method comparison

Sample	E _{acidity} from titration (SA10)	E _{acidity} from summation (GM)	6 th FSCC ring test mean
FSCC Sample A	0.50 σ =0.03 n = 4	0.60 σ = 0.03 n = 4	0.61
FSCC Sample B	0.07 σ = 0.02 n = 3	0.05 σ = 0.02 n = 4	0.11
FSCC Sample C	-0.12 σ = 0.04 n = 4	0.01 σ = 0.02 n = 4	0.08
FSCC Sample D	2.92 σ = 0.15 n = 4	2.76 σ = 0.10 n = 4	3.56
FSCC Sample E	4.07 σ = 0.17 n = 4	4.05 σ = 0.09 n = 4	5.45

Thus, as similar results were obtained, the GM was used in all subsequent analyses

Thank you for your attention!

