

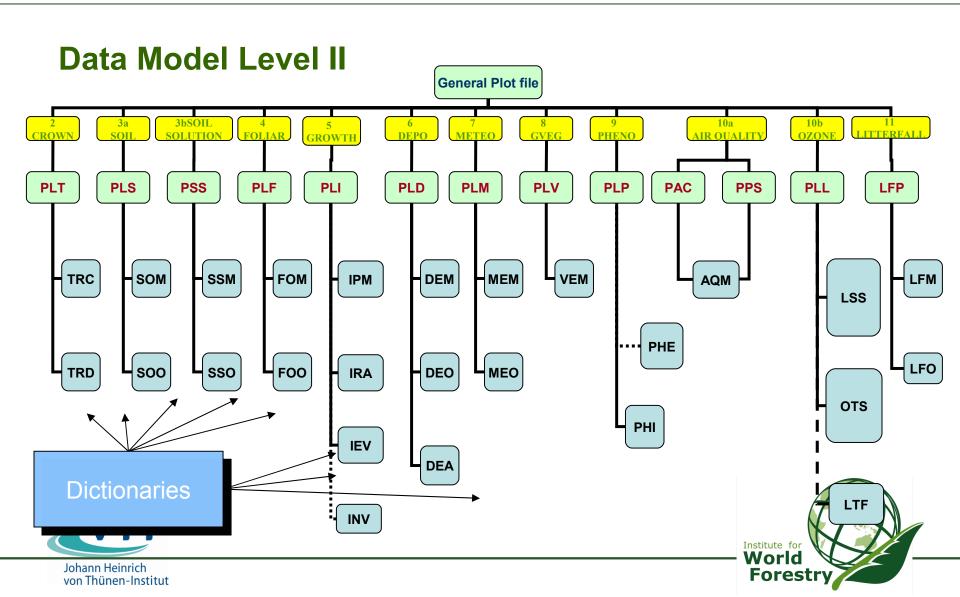
Data submission in FutMon: new forms for quality information

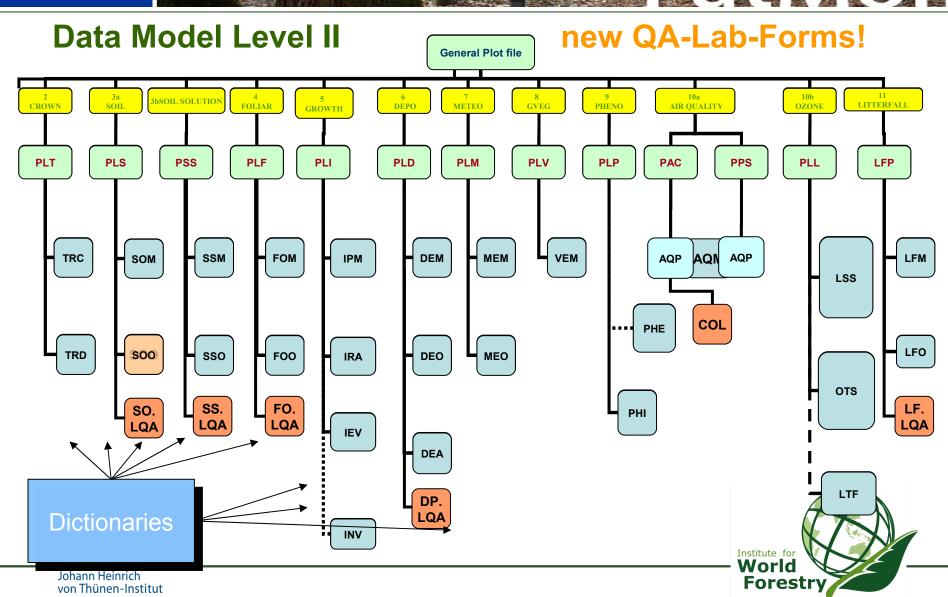
Oliver Granke

2nd Meeting of the Heads of the Laboratories 12-13 October 2009, Warsaw

QA/QC Forms: From the laboratory into the database!

Objectives:


- Development of special QA/QC-Forms, which allow the storage of Ring test results and laboratory quality indicators.
 - Structure of the QA-Forms has been discussed at the FutMon Workshop in January 2009 in Hamburg.
- Each measuring value for each parameter could directly <u>linked</u> to the respective Laboratory quality indicator/Ringtest-result.
- Provides information about the <u>quality</u> and the <u>uncertainties</u> of the data.
- Data submission should be made <u>survey</u> by survey and <u>year</u> by year.
- To each data file the respecting QA/QC-file should be transferred!



FIFE MOS

FIFT OF

Data submission forms and explanatory items:

- Changes which are made in comparison with the latest adopted version of the respective ICP Forests forms are highlighted by using bold font and blue colour.
- All amendments and changes are summarized in an "Amendment index".
- The respective explanatory item is directly linked in the document.

Example: FutMon_ICPForestsForms2009_V5_1a.doc

 Available on the FutMon website http://www.futmon.org/submission.htm

Parameter

Parameter Code (, ,)

Digestion/Extraction method (pretreatment)

code removal compounds (Soil)

Sieving/milling method

Determination method (see reference list)

analytical method information

Quantification limit

quantification limit

Mean of control chart

control chart information

Standard deviation [% of mean] => coefficient of variation

Participated at ring Test (yes = 1, no = 0)

ring test and qualification information

ICP Forests Ring Test Number

ID of laboratory (e.g. H45, B78, etc.)

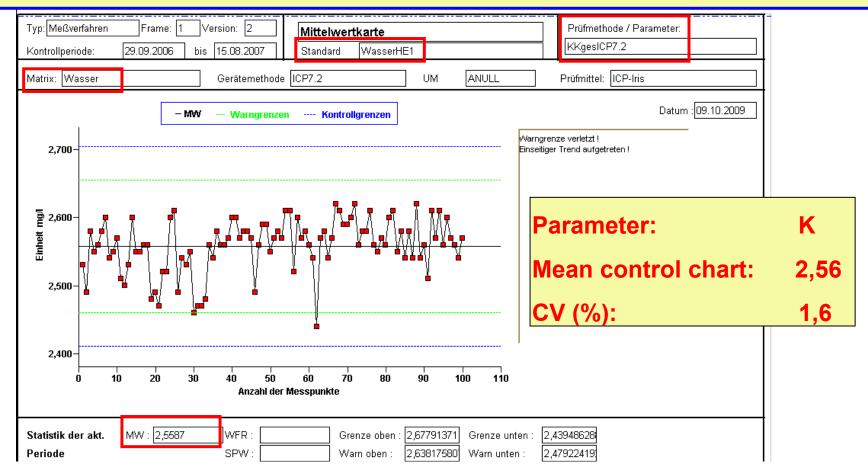
Percentage [%] of the results of the ring test within tolerable limits

Requalification information (y/n)

Percentage [%] of the results of the ring tests within tolerable limits for each ring test in requalification

Other observations (freetext):

[additional information like "no adequate instrument existing"; "old instrument")
[Slide from Nils König 2009]



2nd Meeting of the Heads of the Laboratories, 12.-13. October 2009, Warsaw, Poland

Control chart data

Nordwestdeutsche Forstliche Versuchsanstalt Göttingen, Germany

Instytut Badawczy Leśnictwa

ICP Forests

2nd Meeting of the Heads of the Laboratories, 12.-13. October 2009, Warsaw, Poland

Ring test information

			Oxampi	
74	Participated at ring Test (yes = 1, no = 0)	I 1	1	(109)
76 – 78	ICP Forests Ring Test Number	С3	3	(109)
80 – 82	ID of laboratory (e.g. H45, B78, etc.)	C 3	F12	(109)
84 – 86	Percentage [%] of the results of the ring tests within tolerable limits for each ring test	Ι3	20	(109)
88	Requalification information (yes = 1, no = 0)	I 1	1	(109)
90 – 92	Percentage [%] of the results of the ring tests within tolerable limits for each ring test in requalification	Ι3	80	(109)

example

QA/QC Forms: Example for Deposition! XX2009DP.LQA:

Seguence	Country	Observation					Quantification limit	Mean of control chart		Ring	ICP Forests Lab_ID		Percentage within	Regualification		Other
			(DDMMYY)	(DDMMYY)		method			[%]		Ring test Number		tolerable limits		tolerable limits after regual.	
0104	0607	0912	1419	2126	2834	3639	4146	4853	5557	59	6163	6567	6971	73	7577	79118
1	5 3	0 0 0 1	020109	2 3 1 2 0 9	рН	7 2 . 1		4.2	0.2	1	3	H 2 5	8 2			
2	5 3	0001	020109	2 3 1 2 0 9	Cond	7 1. 1	1 0	5 0	1 5	1	3	H 2 5	9 8			
3	5 3	0 0 0 1	020109	2 3 1 2 0 9	ĸ	2 1	0.0001	0.36	7	1	3	H 2 5	5 7			
4	5 3	0 0 0 1	020109	2 3 1 2 0 9	Ca	2 1	0.0005	1.79	1	1	3	H 2 5	7 4			
5	5 3	0 0 0 1	020109	2 3 1 2 0 9	Mg	2 1	0.0005	0.41	2	1	3	H 2 5	9 5			
6	5 3	0001	020109	2 3 1 2 0 9	Na	2 1	0.0010	1.80	1 1	1	3	H 2 5	8 3			
7	5 3	0001	020109	2 3 1 2 0 9	N_NH4	6 0 . 1	0.0010	1. 2.2	1 0	1	3	H 2 5	6 9			
8	5 3	0001	020109	2 3 1 2 0 9	cī	6 1 . 2	0.0010	3.50	2 5	1	3	H 2 5	4 8	1	9 1	
9	5 3	0001	020109	231209	N_NO3	6 1 . 2	0.0001	0.95	1 7	1	3	H 2 5	8 7			
1 0	5 3	0001	020109	231209	s_so4	6 1 . 2	0.0001	1.83	3 9	1	3	H 2 5	8 8			
1 1	5 3	0001	020109	231209	Alkalir	8 2	0.0001	1 1 3 . 7	2 0	1	3	H 2 5	7 7			
1 2	5 3	0001	020109	2 3 1 2 0 9	N_total	1 2. 2	0.0001	2.73	8	1	3	H 2 5	9 5			
1 3	5 3	0001	020109	231209	DOC	5 0	0.0100	13.6	1 0	1	3	H 2 5	7 2			
1 4	5 3	0001	020109	231209	AI	3 2	0.0001	68.5	6	1	3	H 2 5	8 1			
1 5	5 3	0001	020109	231209	Mn	3 2	0.0001	1 1 9 . 1	3 3	1	3	H 2 5	9 8			
1 6	5 3	0001	020109	231209	Fe	3 2	0.0001	84.2	2 2	1	3	H 2 5	7 1			
1 7	5 3	0001	020109	231209	P PO4	3 2	0.0001	1.52	7	1	3	H 2 5	8 2			
1 8	5 3	0001	020109	231209	lc ū	3 2	0.0001	12.37	1 0	1	3	H 2 5	9 6			
1 9	5 3	0001	020109	2 3 1 2 0 9	Zn	3 2	0.0001	37.82	2 7	1	3	H 2 5	9 9			
2 0	5 3	1	020109	l	На	2 5	0.0001	1.77	6	1	3	H 2 5	8 9			
2 1	5 3	0 0 0 1	020109	2 3 1 2 0 9	Рb	3 2	0.0001	3.73	1 2	1	3	H 2 5	7 8			
2 2	5 3	1	020109	l	c o	3 2	0.0001	0.26	8	1	3	H 2 5	8 5			
2 3	5 3	0001	020109	231209	Мо	3 2	0.0001	0.59	1 1	1	3	H 2 5	9 0			
2 4	5 3	1	020109	l	Ni	3 2	0.0001	0.85	3	1	3	H 2 5	8 2			
2 5	5 3	0 0 0 1	020109	2 3 1 2 0 9	Cd	3 2	0.0001	2.12	2 5	1	3	F 2 2	6 6			
2 6	5 3	1	I	2 3 1 2 0 9	l	1	0.0100		1 2	1 1	3	H 2 5	8 8			
2 7	l	1	I	2 3 1 2 0 9	_	1	0.0100		1 1	1 1	3		7 9			

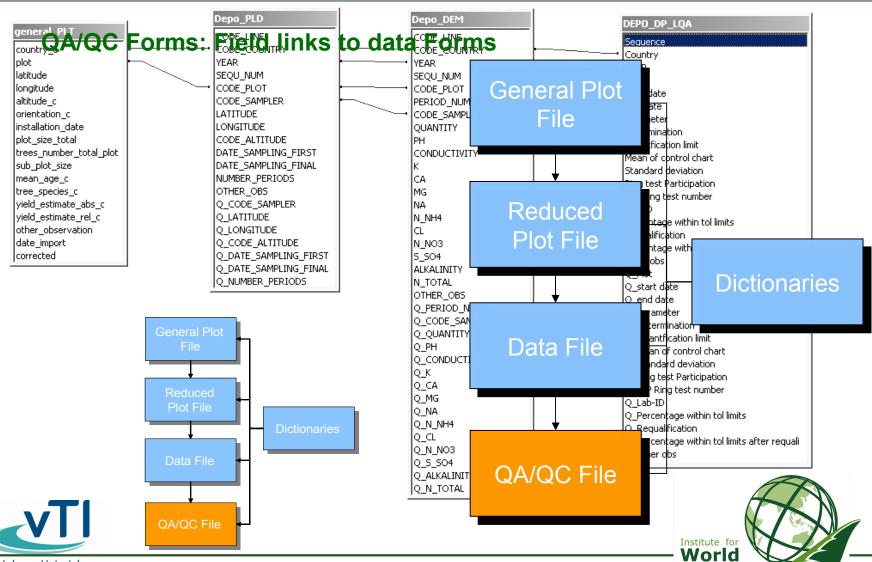
QA/QC Forms: Comments to some Fields:

Why entering each plot and each parameter separately?

- Enables the coding of <u>different</u> analyzing laboratories on <u>plot level within a country.</u>
- _Enables the coding of <u>different</u> analyzing laboratories on <u>parameter level</u> <u>within a plot.</u>
- => In cases, that one laboratory is responsible for all parameters on all plots within a country, it is a "copy-paste-exercise", only changing the respective plot number.

QA/QC Forms: Comments to some Fields:

start_date, end_date:


- Enables the coding of the <u>change</u> of the analyzing laboratory <u>during a year.</u>
- The start_date is the <u>first</u> (analysing) date from which the laboratory analysed the data from the respective plot, sampler and parameter.
- The end_date is the <u>last day</u> of the analyses of the respective plot sampler and parameter combination.
- => Only in case, that a laboratory has been changed during one monitoring year, it would be necessary to use an additional data row with the respecting time period in which the new laboratory has been analysed the data.

Forest

FIEMOS

Johann Heinrich von Thünen-Institut

QA/QC Forms: Field links to data Forms

Forestry

QA/QC Forms: Field links to data Forms

DEM:

	Sequence	Country	Plot	Period	Start Date	End Date	pН	Conductivity	K	Ca	Mg	Na	N-NH4	••••
	1	53	5	1	210209	180409	5.2	73	5.5	3.9	0.7	0.8	2.3	
	2	53	5	2	180409	190509	4.3	28	0.5	1.5	0.1	0.3	0.8	
				J				_						
РΙ	imary key	4				7								

fields

Link to year

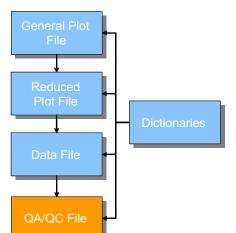
Corresponding parameter

Sequence Country			p]	lot	nu	mb			_				en (D	_			ΥY			Det met			tioi	n					
0104	0607		0912				1419						21	2	26				2834	36	39				1				
1		5 3	(0	0	0	5	0	2	0	1	0	9	2	3	1	2	0	9	рН	7	2	2.	1					_
2		5 3	(0	0	0	5	0	2	0	1	0	9	2	3	1	2	0	9	Cond	7		1.	1					
3		5 3	(0	0	0	5	0	2	0	1	0	9	2	3	1	2	0	9	K	2		1						
4		5 3	(0	0	0	5	0	2	0	1	0	9	2	3	1	2	0	9	C a	2		1						
5		5 3	(0	0	0	5	0	2	0	1	0	9	2	3	1	2	0	9	M g	2		1						
6		5 3	(0	0	0	5	0	2	0	1	0	9	2	3	1	2	0	9	N a	2		1						

Outlook:

- First Submission for QA/QC-Data: Monitoring year 2009.
 - Data Submission period: 01/09/2010 30/11/2010
- Monitoring years 2007/2008 on voluntary basis.
 - Data Submission period 2007: 15/12/2009 15/03/2010
- Development of validation routines for QA/QC-Forms.
- ⇒We need the support by the Working Group on QA/QC in Laboratories and respective Expert Panels!

Thank you for your attention!



THE MOST

Depo_PLD general PLT CODE LINE country_c CODE_COUNTRY plot YEAR latitude SEQU_NUM longitude CODE_PLOT altitude c CODE_SAMPLER orientation_c LATITUDE installation_date LONGITUDE plot_size_total CODE ALTITUDE trees number total plot DATE_SAMPLING_FIRST sub plot size DATE_SAMPLING_FINAL mean_age_c NUMBER PERIODS tree_species_c OTHER_OBS yield_estimate_abs_c Q_CODE_SAMPLER yield_estimate_rel_c Q_LATITUDE other_observation Q_LONGITUDE date import O CODE ALTITUDE corrected O DATE SAMPLING FIRST Q_DATE_SAMPLING_FINAL Q NUMBER PERIODS **General Plot**

Depo DEM CODE LINE CODE COUNTRY YEAR SEQU_NUM CODE_PLOT PERIOD_NUMBER CODE_SAMPLER QUANTITY CONDUCTIVITY CA lmg. NA. N_NH4 CL N_NO3 5 504 ALKALINITY N_TOTAL OTHER_OBS Q_PERIOD_NUMBER Q_CODE_SAMPLER Q_QUANTITY Q_PH O CONDUCTIVITY Q_K Q CA Q_MG Q_NA Q_N_NH4 O CL Q_N_NO3

DEPO_DP_LQA

Sequence Country

· YEAR

Plot start date

end date

Parameter

Determination

Determination

Quantfication limit

Mean of control chart

Standard deviation

Ring test Participation

ICP Ring test number

Lab-ID

Percentage within tol limits

Requalification

Percentage within tol limits after requali

other obs

Q Plot

Q_start date

Q_end date

O Parameter

O Determination

Q_Quantfication limit

Q_Quartericación minic

Mean of control chart

Q_Standard deviation

Q_Ring test Participation

Q_ICP Ring test number

Q_Lab-ID

Q_Percentage within tol limits

Q_Requalification

Q_Percentage within tol limits after reguali

Q_other obs

von Thünen-Institut

Q_S_SO4 Q_ALKALINITY O N TOTAL