9° Meeting of the Expert Panel on Deposition (28-29 September 2006, Ski, Norway)

Activities of the Working Group on QA/QC in Laboratories

Rosario Mosello

CNR Institute of Ecosystem Study, Verbania Pallanza, Italy WG on QA/QC in laboratories within ICP Forests

Plan of the presentation

Short introduction on the activities of the WG on QA/QC

Validation of results – The ion balance and the charge of DOC in atmospheric deposition and soil water. First results, next steps

Plans for the 3° Working Ring Test

Report on help given to laboratories

Future activities of the WG on QA/QC

Aims of the WG on QA/QC

- The WG on QA/QC will promote actions, discussions and meetings to achieve a general improvement of the QA/QC in the analytical activities performed within the ICP Forests;
- Regularly conduct working ring tests (WRT), analyse the results, present them at the EPD-meeting or at other occasions and publish the results;
- Identify each year a maximum of 2-3 laboratories to be actively helped; fix targets with these labs and follow their progress according to mutually agreed targets;
- Advise and assist all laboratories which seek help or which have been identified as having analytical difficulties in progressing with their own QA/QC;

Aims of the WG on QA/QC

- Update the ICP Forest manual when necessary, taking into account the evolution of analytical techniques and instrumentation and the specific problems of the ICPF analytical team;
- Develop and follow annually a 5-7 main analytical QA/QC indicators designed to show objectively the evolution/progress in QA/QC made by all participating countries;
- Collaborate with the institution appointed to store and elaborate the data (JRC and BFH) relating to the QA/QC of the laboratories, and to perform data validation and elaboration;
- Cooperate with the QA/QC executives from the soil expert panel to check the possibility of a combined working group.

WG on QA/QC, present composition

Rosario Mosello, Gabriele Tartari, Verbania Pallanza, Italy John and Kirsti Derome, Rovaniemi, Finland Erwin Ulrich, Fontainebleau, France Nils König, Goettingen, Germany Nicholas Clarke, Ås, Norway Anna Kowalska, Warsaw, Poland Polona Kalan, Ljubljana, Slovenia

WG on QA/QC - Activities done and going on

- Collection of information on the analytical methods going on in the laboratories involved in the deposition/soil water analyses.
- Web page for information and exchange of documents (www.icp-forests.org). It becomes in one year the central tool for the circulation of information within the WG and all laboratories. NFCs and any data user are invited to regularly get connected to this site.
- Technical notes as an easy tool for information among laboratories about studies done within a laboratory but for which no publication was made.
- Pointing out criteria for the validation of chemical analyses;

WG on QA/QC - Activities done and going on

Criteria for the validation of chemical analyses

➢ Ionic balance;

Comparison between measured and calculated conductivity;

Na/CI ratio validation test;

Organic nitrogen validation test.

lonic balance

PD = 100 *
$$\frac{(\Sigma \text{ cat} - \Sigma \text{ an})}{0.5 (\Sigma \text{ cat} + \Sigma \text{ an})}$$

 $\Sigma_{\text{anions}} = \text{Alk} + [\text{SO}_4^{=}] + [\text{NO}_3^{-}] + [\text{CI}^{-}] + [\text{Org}^{-}]$ $\Sigma_{\text{cations}} = [\text{Ca}^{++}] + [\text{Mg}^{++}] + [\text{Na}^{+}] + [\text{K}^{+}] + [\text{H}^{+}] + [\text{NH}_4^{+}]$

Comparison between measured (CM) and calculated conductivity (CE)

$$\frac{\text{CD}}{\text{CM}} = 100 * \frac{(\text{CM-CE})}{\text{CM}}$$

for conductivity \leq 100 µS cm⁻¹ CE $_{\infty} = \sum \lambda_i c_i$

for conductivity > 100 µS cm⁻¹ $CE = \sum \lambda_i f_i c_i$

 λ_i equivalent ionic conductance C_i Concentration of the ion i f_i activity coefficient

	Units	Factors to µeq L ⁻¹	Equivalent conductance at 25°C kS cm ² eq ⁻¹
рН		10 ^{6*} 10 ^{-pH}	0.3500
Ammonium	mg N-NH ₄ L ⁻¹	71.39	0.0735
Calcium	mg L ⁻¹	49.90	0.0595
Magnesium	mg L ⁻¹	82.29	0.0531
Sodium	mg L ⁻¹	43.50	0.0501
Potassium	mg L ⁻¹	25.58	0.0735
Alkalinity	meq L ⁻¹	1000	0.0445
Sulphate	mg S L ⁻¹	62.37	0.0800
Nitrate	mg N- NO ₃ L ⁻¹	71.39	0.0714
Chloride	mg L ⁻¹	28.21	0.0764

Acceptance threshold values in data validation based on the ionic balance and conductivity

Conductivity of the sample 25 °C	Ionic balance	Conductivity
<u>≤</u> 10 µS cm ⁻¹	± 20%	±30%
< 20 µS cm ⁻¹	± 20%	±20%
> 20 µS cm ⁻¹	± 10%	±10%

Applicability of ion balance and conductivity tests to different type of solutions

	ion balance	conductivity	Na/CI	nitrogen
wet-only	yes	yes	yes	yes
bulk open field	yes	yes	yes	yes
throughfall	no	yes	yes	yes
stemflow	no	yes	yes	yes
runoff	?	yes	no	yes
soil water	no	yes	no	yes

? = applicable if TOC is lower than 5 mg C L^{-1}

Organic nitrogen validation test

TN = $N-NO_3^- + N-NH_4^+ + (N-NO_2^-) + Org_N$ Org_N = TN - $N-NO_3^- - N-NH_4^+$

The concentration of organic nitrogen can not be negative!

 $TN - N - NO_3^- - N - NH_4^+ >= 0$

💌 Mie	Microsoft Excel - EPD_analytical_data_validation																		
:B) [🕙 File Modifica Visualizza Inserisci Formato Strumenti Dati Finestra ? Digitare una domanda. 🗸 🗖								. 8 ×										
: 🗅 🛛	🎽 🔒 👌 👌	3 🖪 🗇 🛍 🕽	6 🗈 🛍 •	I 🔊 🚽	(***	🧕 Σ ᠇	A↓ Z↓ ∭	125% 🚯	• • 🕜	🗸 🕴 Times Ne	w Roman	• 8 •	GC	<u>s</u> 📰 🗏		¶%€	,00 ⇒,0	• 🖄 • <u>A</u>	
	408 🗸	fx		1										1	1				
<u> </u>	A	B	С	D	E	F	G	H	I	J	K	L	М	N	0	P	Q	R	
1	ICP Fores	sts																	
2	Sampling	station:	Exam	ple															
3																			
4	Please fill in	only green cel	le																
-	r rease mi m	omy green eer	15																
5					Xm														
6				pH	χ25°C	Са	Mg	Na	K	$N-NH_4$	$S-SO_4$	$N-NO_3$	Cl	T. Alk.	PO_4	TN	DOC	ON	A
7	Starting day	End day	mm		μS cm ⁻¹	${ m mg}~{ m L}^1$	mg L ⁻¹	mg L ⁻¹	${ m mg}~{ m L}^{ m 1}$	mg L ⁻¹	$mg L^1$	mg L ⁻¹	${ m mg}~{ m L}^{-1}$	µeq L ¹	mg L ⁻¹	mg L ⁻¹	$mg L^{-1}$	mg L ⁻¹	μ
9	28/12/2004	04/01/2005	27.2	5.89	45.6	1.12	0.75	5,50	0.52	0.233	0.82	0.232	9.70	8	0.008	0.43		-0.04	
10	04/01/2005	11/01/2005	119,7	6,65	29,7	1,29	0,39	2,53	0,22	0,106	0,49	0,128	5,00	70	0,003	0,41		0,18	
11	11/01/2005	18/01/2005	70,9	6,18	10,0	0,20	0,12	0,87	0,11	0,079	0,24	0,129	1,35	10	0,000	0,61		0,40	
12	18/01/2005	25/01/2005	48,0	6,08	12,9	0,41	0,16	1,08	0,14	0,060	0,41	0,126	1,75	15	0,004	0,29		0,10	
13	25/01/2005	01/02/2005	104,5	4,94	15,7	0,22	0,15	1,33	0,14	0,055	0,40	0,176	2,24	0	0,000	0,46		0,23	
14	01/02/2005	08/02/2005	28,6	6,21	15,6	0,59	0,19	1,27	0,20	0,100	0,40	0,235	1,80	20	0,000	0,57		0,24	
15	08/02/2005	15/02/2005	29,7	5,45	30,4	1,12	0,34	2,20	0,18	0,470	1,13	0,540	4,10	0	0,003	1,26		0,25	
16	15/02/2005	22/02/2005	92,7	5,58	31,6	0,47	0,47	3,60	0,23	0,130	0,64	0,170	5,97	0	0,001	0,44		0,14	
17	22/02/2005	01/03/2005	10,2	6,44	90,2	4,29	1,28	7,00	0,72	0,850	2,70	1,050	12,80	110	0,015	2,21		0,31	
18	01/03/2005	08/03/2005	45,7	5,99	9,6	0,40	0,07	0,44	0,13	0,130	0,40	0,122	0,79	6	0,004	0,37		0,12	
19	08/03/2005	15/03/2005	56,4	5,98	18,0	0,56	0,16	1,35	0,18	0,320	0,65	0,300	1,92	15	0,001	0,75		0,13	
20	15/03/2005	22/03/2005	55,5	4,66	41,1	0,34	0,47	2,87	0,22	0,270	0,83	0,370	6,12	0	0,001	0,83		0,19	
21	22/03/2005	29/03/2005	68,1	5,67	29,3	1,02	0,41	2,55	0,24	0,140	0,80	0,223	4,97	11	0,002	0,42		0,06	
22	29/03/2005	05/04/2005	148,2	5,95	17,9	0,70	0,18	1,34	0,10	0,150	0,67	0,105	2,37	10	0,002	0,29		0,04	
23	05/04/2005	12/04/2005	26,8	4,74	20,3	0,44	0,13	0,45	0,13	0,460	0,81	0,456	0,66	0	0,000	0,93		0,01	
24	12/04/2005	19/04/2005	106,2	4,98	15,3	0,21	0,06	0,23	0,09	0,480	0,76	0,284	0,30	0	0,001	0,85		0,09	
25	19/04/2005	26/04/2005	53,4	5,23	19,6	0,37	0,19	1,56	0,34	0,110	0,56	0,402	2,60	0	0,003	0,62		0,11	
26	26/04/2005	03/05/2005	21,9	4,54	33,7	1,49	0,21	0,98	0,27	0,340	1,40	0,770	1,73	0	0,002	1,34		0,23	
27	03/05/2005	10/05/2005	16,3	6,36	20,3	1,43	0,16	0,79	0,21	0,490	0,83	0,482	1,25	16	0,001	1,15		0,18	
28	10/05/2005	17/05/2005	22,7	5,64	35,1	1,29	0,43	3,37	0,48	0,100	0,97	0,380	6,05	0	0,001	0,54		0,06	
29	17/05/2005	24/05/2005	95,6	6,38	21,2	0,35	0,24	1,90	0,14	0,060	0,46	0,192	3,28	1	0,006	0,37		0,12	
30	24/05/2005	31/05/2005	35,7	4,91	21,4	0,31	0,22	1,60	0,16	0,115	0,46	0,255	2,76	0	0,009	0,52		0,15	
31	31/05/2005	07/06/2005	39,2	4,68	17,2	0,25	0,12	0,59	0,16	0,210	0,44	0,333	1,08	0	0,005	0,70		0,16	
32	07/06/2005	14/06/2005	131,7	4,79	29,4	0,69	0,40	2,79	0,19	0,213	0,63	0,234	4,92	0	0,015	0,69		0,24	······
II I	Results / S	icat - S an / Xm-X	(c corrected	/ Na-Cl /	Notes /											<		New years of the	>
Pronto																		NUM	

😕 File Modifica Visualizza Inserisci Formato Strumenti Dati Finestra ?

Digitare una domanda. 🛛 🚽 🗗 🗙

/	AC8 🔸 🏂													
	P	Q	R	S	Т	U	V	W	X	Y	Z	AA	AB	~
3														Ξ
4				S an	Scat				Xcc					
5				Si	um	Ions	Quality		Calculated corrected	Cond.	Quality	Quality	Quality	
	TN	DOC	ON	Anions	Cations	Diff %	Tons	Ratio	Conductivity	Diff %	Conductivity	OrgN	ratio	
6				2 IIIOIIS		еС-е 4	balanca	No(Cl		Cc-Cm	conductivity	Olg I,	Na/Cl	
	mgL	mg L	mg L	hed r	µeq L	30-3H	Darance	NarCi	µS cm * 25°C	00-011			ina ci	
9	0,43		-0,04	350	388	10	NO	0,87	46	0	ok	NO TN	ok	
10	0,41		0,18	251	220	-13	NO	0,78	28	-6	ok	ok	ok	
11	0,61		0,40	72	67	-8	ok	0,99	9	-11	ok	ok	ok	
12	0,29		0,10	99	89	-10	ok	0,95	12	-7	ok	ok	ok	
13	0,46		0,23	101	100	-1	ok	0,92	16	2	ok	ok	ok	
14	0,57		0,24	113	113	0	ok	1,09	14	-10	ok	ok	ok	
15	1,26		0,25	225	221	-2	ok	0,83	30	-2	ok	ok	ok	
16	0,44		0,14	220	236	7	ok	0,93	29	-8	ok	ok	ok	
17	2,21		0,31	715	703	-2	ok	0,84	85	-6	ok	ok	ok	
18	0,37		0,12	62	58	-6	ok	0,86	8	-15	ok	ok	ok	
19	0,75		0,13	131	128	-2	ok	1,08	17	-7	ok	ok	ok	
20	0,83		0,19	251	227	-10	ok	0,72	37	-11	NO	ok	ok	
21	0,42		0,06	217	214	-2	ok	0,79	28	-6	ok	ok	ok	
22	0,29		0,04	126	123	-3	ok	0,87	16	-10	ok	ok	ok	
23	0,93		0,01	102	107	5	ok	1,05	19	-6	ok	ok	ok	
24	0,85		0,09	76	72	-5	ok	1,18	13	-13	ok	ok	ok	
25	0,62		0,11	137	124	-10	ok	0,93	18	-6	ok	ok	ok	
26	1,34		0,23	191	194	2	ok	0,87	33	-1	ok	ok	ok	
27	1,15		0,18	137	160	15	NO	0,97	19	-6	ok	ok	ok	
28	0,54		0,06	259	268	4	ok	0,86	34	-4	ok	ok	ok	
29	0,37		0,12	136	128	-6	ok	0,89	17	-20	NO	ok	ok	
30	0,52		0,15	125	128	2	ok	0,89	20	-8	ok	ok	ok	
31	0,70		0,16	82	88	7	ok	0,84	17	-1	ok	ok	ok	
32	0,69		0,24	195	225	14	NO	0,87	31	5	ok	ok	ok	
33	0,58		0,16	96	98	2	ok	0,86	22	-6	ok	ok	ok	
34	0,50		0,12	134	143	6	ok	0,98	18	-4	ok	ok	ok	
35	0,85	ulter / a	0.14	104	119	13	ok	1,09	18	-3	ok	ok	ok	~
Propto	PIL Res	uits <u>(</u> 'S ca	t-san ∕	AIN-XC COrrected	u <u>i na-ci i Not</u>	es /							NEM	

Examples of the application of the validation criteria

> About 5000 analyses of deposition samples done from 7 different laboratories Broadleaves

Coniferous Laboratories

J. Limnol., 64(2): 93-102, 2005

Validation of chemical analyses of atmospheric deposition in forested European sites

Rosario MOSELLO^{*}, Monica AMORIELLO¹), Tiziana AMORIELLO¹), Silvia ARISCI, Andrea CARCANO, Nicholas CLARKE²), John DEROME³), Kirsti DEROME³), Nils KOENIG⁴), Gabriele TARTARI, Erwin ULRICH⁵)

CNR Institute Ecosystem Study, Largo V. Tonolli 50, 28922 Verbania Pallanza, Italy ¹⁾CRA Experimental Institute for Plant Nutrition, Via della Navicella 2/4, 00184 Roma, Italy ²⁾Norwegian Forest Research Institute, Hogskoleveien 12, 1432 Ås, Norway ³⁾Finnish Forest Research Institute, Rovaniemi, P.O. Box 16, 96301 Finland ⁴⁾Niedersaechsische Forstliche Versuchsanstalt, Graetzelstr. 2, 37079 Goettingen, Germany ⁵⁾Office National des Forêts, Boulevard de Constance, 77300 Fontainebleau, France *e-mail corresponding author: r.mosello@ise.cnr.it Criteria proposed for the data validation are not rigid and mandatory, but should be used merely as guidelines for the person in charge of validation in each laboratory.

Analyses which do not fit with the validation criteria should be repeated and, if data are confirmed, they should be accepted and included in the database. Criteria for the validation of the results of chemical analyses (atmospheric deposition, soil water) Second step

Aims

Emphasise the use of data validation in the routine practice of analysis

Include DOC in the validation

Increase the number of laboratories involved in the exercise

Investigate on the meaning and relationships of DOC in atmospheric deposition and soil water

Laboratories at present involved in the study

Italy	C.N.R. Institute of Ecosystem Study, Pallanza
France	SGS Laboratories Wolff-Environment, Evry
Norway	Norwegian Forest Research Institute, Ås
Germany	Niedersaechsische Forstliche Versuchsanstalt, Goettingen
Switzerland	WSL, Birmensdorf
Denmark	Forest & Landscape, Hørsholm
Flanders (Belgium)	Laboratorium Bodemkunde & IBW (pH and EC)
UK	Forest Research, Farhnam, Hampshire

Number of data collected

Laboratory	BOF	THR Beech	THR Oak	THR other	THR Broadleaves	THR Pine	THR Spruce	THR other	THR Conifers
Italy	659	278	231	0	509	0	110	59	169
France	0	0	0	0	<u>1361</u>	0	0	0	0
Norway	181	0	0	0	0	0	216	51	267
Germany	268	99	33	0	132	66	198	0	264
Switzerland	307	132	88	0	220	45	42	28	115
Denmark	101	130	71	0	201	0	195	0	195
Flanders	402	208	0	105	313	108	0	0	108
UK	375	0	307	0	307	848	0	0	848

Laboratory	STF Broadleaves	STF Conifers	Soil water
			metals
Italy	125	0	0
France	<u>194</u>	0	1562 No data
Norway	0	0	267 \star 🛛 T Al, Fe, Mn
Germany	0	0	1416 \star 🛛 T AI, AI org, Fe, Mn
Switzerland	0	0	0
Denmark	0	0	798 \star 🛛 T Al, Fe, Mn
Flanders	105	0	475 \star 🛛 T AI, Fe
UK	0	0	1287 \star 🛛 T AI, Fe, Mn

Data treatment

- Data of each laboratory were validated using the standard excel file for the data validation, available in the web. Data of each laboratory were aggregated on the basis of (1) each single plot and (2) of the type of vegetation.
- > Other graphs were added to those already present in the validation file. They are useful for a general exploration of data and include the relationship between **DOC** and Σ cations Σ anions.
- The data used for the evaluation of DOC Formal Charge include those not fitting the validation criteria, but do not include the highest values (strong skewness).
- The evaluation of DOC FC using the slope of the linear regression must be considered as a preliminary approach.

lonic balance

PD = 100 *
$$\frac{(\Sigma \text{ cat} - \Sigma \text{ an})}{0.5 (\Sigma \text{ cat} + \Sigma \text{ an})}$$

$$\Sigma_{\text{anions}} = \text{Alk} + [\text{SO}_4^{=}] + [\text{NO}_3^{-}] + [\text{CI}^{-}] + [\text{Org}^{-}]$$

 $\Sigma_{\text{cations}} = [Ca^{++}] + [Mg^{++}] + [Na^{+}] + [K^{+}] + [H^{+}] + [NH_4^{+}]$

[Org-] is measured as DOC (mg C L⁻¹) We indicate as DOC formal charge the apparent ionic charge of 1 mg/L of DOC assuming that:

no errors are affecting the ion concentrationsno other ions are present in solutions

Ionic balance

$$\Sigma_{\text{anions}} = Alk + [SO_4^{=}] + [NO_3^{-}] + [Cl^{-}] + [Org^{-}]$$
$$\Sigma_{\text{anions}} = Alk + [SO_4^{=}] + [NO_3^{-}] + [Cl^{-}] + f(DOC)$$

f (DOC) = slope * DOC + intercept

Number of data collected

Laboratory

Soil water

metals Italy 0 France 1562 no data Norway 267 * T AI, Fe, Mn Germany 1416 * T AI, AI org, Fe, Mn Switzerland 0 Denmark 798 \star T Al, Fe, Mn Flanders 475 * T AI, Fe UK 1287 * T AI, Fe, Mn

Soil water

In the case of soil water both organic carbon and trace metals are important in the ion balance.

However there are problems in evaluating the ionic contribution of trace metals to the ion balance, because of the dependence of the metal speciation from pH and the possibility of complexation with organic substance (DOC).

These aspects do not exclude the possibility to check for correlations among variables, assuming a full dissociation of trace metals

all samples minus samples without Al (Al>1 mg/l)

The slope of the regression DOC (mg L⁻¹) vs Cat-An (µeq L⁻¹) is an evaluation of the DOC Formal Charge

Slope = Δ y / Δ x = μ eq L⁻¹ / mg C L⁻¹ = μ eq / mg C

Atmospheric deposition, bulk open field

y = 2.0688x + 2.465

Regression DOC (mg L⁻¹) vs Cat-An (µeq L⁻¹) Switzerland

	slope	intercept	n	r²
Beech	4.94	3.58	134	0.70
Oak	6.07	-3.45	88	0.71
Conifers	4.25	1.00	118	0.68
All tree species	5.43	-1.55	340	0.69

Switzerland, throughfall

Regression DOC (mg L⁻¹) vs Cat-An (µeq L⁻¹) values of the slope (µeq/mg C L⁻¹)

	Switzerland	Italy
Beech	4.9	3.5
Oak	6.1	5.4
Conifers	4.3	3.0
All tree species	5.4	4.6

Partial conclusions

A DOC Formal Charge can be evaluated and used in the ion balance evaluation in the case of throughfall and stemflow deposition, but not in the case of bulk deposition.

Better results are obtained considering separately the different tree species.

Further data elaboration is needed to evaluate the role of systematic errors in affecting the value of the DOC Formal Charge.

Further elaboration of data

Questions:

Data elaboration should be done after the elimination of results not fitting with the validation criteria?

How much systematic errors and/or missing variables may affect the evaluation of DOC Formal Charge?

Which variables affects mostly the values of DOC Formal Charge?

Proposed evaluation (1) For each laboratory and type of solution: Does the organic carbon formal charge (OCFC) exist as a function of DOC? ** If yes, does the OCFC depend on type of vegetation (broad leaves/conifers)? Use the Analysis of Covariance (ANCOVA) to test: (Cat-An) = f(DOC, veg). If there are differences between solutions from broadleaves/conifers plot, $(Cat-An) = f(DOC), R^2$, intercept, slope, number of data n

Comparison among the regressions from all laboratories through test F.

Does the OCFC depend on sampling station (code)?

Use the Analysis of Covariance (ANCOVA) to test: (Cat-An) = f(DOC, code).

Proposed evaluation (2)

For all laboratories and for each type of solution:

Does the OCFC depend on type of vegetation (broad leaves/conifers)?
 Use the Analysis of Covariance (ANCOVA) to test: (Cat-An) = f(DOC, veg).

If there are differences between solutions from broadleaves/conifers plot,

(Cat-An) = f(DOC), R², intercept, slope

amount of precipitation PR)?

Use the Analysis of Covariance (ANCOVA) to test:

(Cat-An) = f(DOC, alt, lat, lon, AT, PR)

Criteria for the validation of the results of chemical analyses (atmospheric deposition, soil water) Second step

- To make successfully this analysis it is needed the strict collaboration of the persons in charge of the chemical results of each laboratory aimed at:
- excluding unreliable results.
- verifying that no errors were done during the data manipulation.
- analysing and commenting results of the statistical analysis.

Acknowledgements

All the colleagues who provided data and commented different aspects of the elaboration:

Italy	C.N.R. Institute of Ecosystem Study, Pallanza
France	Erwin Ulrich
Norway	Nicholas Clarke
Germany	Nils Konig
Switzerland	Anne Pelletier, Maria Dittrich, Daniele Pezzotta
Denmark	Karin Hansen
Flanders (Belgium)	Nicole Vindevogel, Gerrit Genouw
UK	Sue Benham

Acknowledgements

Colleagues which participated in the first part of the elaboration:

Tamara Jakovljevic, Maria Cristina Brizzio, Gabriele Tartari, Arianna Orrù

Planning of the statistical analysis:

Tiziana Amoriello

Thanks for your attention:

Discussion is open!

WG on QA/QC Activities done and going on

1. Update of the Part VI (Sampling and analysis of atmospheric deposition) of the ICP Forests manual, dealing with QA/QC in chemical analyses and data validation United Nations Economic Commission for Europe Convention on Long-range transboundary Air Pollution

International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests

MANUAL

on Methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests

Part VI

Sampling and Analysis of Deposition

updated: 06/2004

WG on QA/QC Activities done and going on

2. Working Ring Test 1 (2002)

European Union / United Nations Economic Commission for Europe International Co-operative Programme on Assessment and Monitoring of Air Pollution on Forests

ATMOSPHERIC DEPOSITION AND SOIL SOLUTION WORKING RING TEST 2002

Laboratory ring test for deposition and soil solution sample analyses between the countries participating in the ICP Forests level I monitoring programme

December 2002

METLA

WG on QA/QC Activities done and going on

3. Working Ring Test (2005)

European Union / United Nations Economic Commission for Europe International Co-operative Programme on Assessment and Monitoring of Air Pollution on Forests

Atmospheric deposition and soil solution Working Ring Test 2005

aboratory ring-test for deposition and soil solution sample analyses between the countries participating in the ICP Forests level II monitoring programme

SKOG FORSK

